General Instructions:

- *(i)* All questions are compulsory.
- (ii) Figures to the right indicate full marks.
- (iii) The question paper consists of 9 questions into FOUR sections A,B,C,D.
 - Section A contains 2 questions of 1 mark each.
 - Section B contains 2 questions of 2 marks each.
 - Section C contains 3 questions of 4 marks each.
 - Section D contains 2 questions of 6 marks each.

SECTION A

Select and write the most appropriate answer from the given alternatives for each question:

- 1. Let N be the set of natural numbers and R be the relation in N defined as $R = \{(a,b): a = b 2, b > 6\}$, then [1]
 - (A) $(2,4) \in R$ (B) $(3,8) \in R$
 - (C) $(6,8) \in R$ (D) $(8,7) \in R$

Fill in the blanks in question:

2. A relation R in a set A is called _____, if $(a_1, a_2) \in R$ implies $(a_2, a_1) \in R$ for all $a_1, a_2 \in A$. [1]

SECTION B

- 3. Write the smallest equivalence relation R on set $A = \{1, 2, 3\}$.
- 4. Let * be a binary operation on N given by a * b = LCM (a, b) for all $a, b \in N$. Find 5 * 7. [2]

SECTION C

- 5. Let $A = \{1, 2, 3, \dots, 9\}$ and R be the relation in $A \times A$ defined by (a,b)R(c,d) if a+d=b+c for (a,b),(c,d) in $A \times A$. Prove that R is an equivalence relation. Also obtain the equivalence class [(2,5)]. [4]
- 6. Show that the function f in $A = R \left\{\frac{2}{3}\right\}$ defined as $f(x) = \frac{4x+3}{6x-4}$ is one-one and onto. [4]
- 7. Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a,b): a, b \in Z \text{ and } (a-b) \text{ is divisible by 5}\}$. Prove that R is an equivalence relation. [4]

[2]

[6]

SECTION D

- 8. Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b − ab ∀a, b∈S. Prove that :
 (i) * is a binary on S.
 (ii) * is commutative as well as associative. Also find the identity element of *.
- 9. Show that the function $f: R \to \{x \in R: -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+|x|}$, $x \in R$ is one-one and onto function. [6]

<u>Answers</u>

1		
	$1 (C) (6,8) \in R$	2 Symmetric
	$\frac{3}{R} = \{(1, 1), (2, 2), (3, 3)\}$	4 LCM (5, 7) =35
	$5 = \{1, 2, 3, \dots, 9\}$	6
	Consider (a,b) R (a,b)	For one-one $f(x_1) = f(x_2)$
	a+b=b+a Hence, R is reflexive.	For onto:
	Consider (a,b) R (c,d) a+d=b+c =>c+b=d+a	$y = \frac{4x+3}{6x-4}$
	$\Rightarrow (c,d)R(a,b)$ Hence R is symmetric.	$f^{-1}(x) = \frac{4x+3}{6x-4}$
	Let (a,b) R (c,d) and (c,d) R (e,f) a+d=b+c and c+f=d+e $\Rightarrow a-c=b-d-c$ (1)	Function is inverse of itself
	c+f=d+e-(2) Adding (1) and (2) a-c+c+f=b-d+d+e	
	a+f=b+e (a,b)R(e,f) Hence R is transitive	
	Therefore, R is an equivalence relation.	
	Now, p and q select from set A= $\{1,2,3,,9\}$ such that 2+q=5+p	
	so $q=p+3$ Consider (1,4) (2,5) R (1,4) \Rightarrow 2+4=5+1	
	[(2,5)=(1,4)(2,5),(3,6),(4,7),(5,8),(6,9)] is the equivalent class under relation R.	
	For Reflexive Relation $(a,a) \in \mathbb{R}$. Since, $(a-a)=0$ is divisible by 5.	8 (i) $S \in Q - \{1\}$. $a * b = a + b - ab \forall a, b \in S$.
	Therefore, the relation is reflexive. For symmetric Relation (a b) $\in \mathbb{R} \Rightarrow$ (b a) $\in \mathbb{R}$	Sum, difference and product of rational numbers is a unique
	$(a,b)\in \mathbb{R} \Rightarrow (a-b)$ is divisible by 5. Now, $(b-a)=-(a-b)$ is also divisible by 5.	rational number. For each $(a,b) \in S \times S$, there exists a unique image
	Therefore, (b,a)∈R Hence, the relation is symmetric.	(a + b - ab) in S. * is a binary operation on S.
	For Transitive: If $(a,b)\in R$ and $(b,a)\in R\Rightarrow (a,c)\in R$. $(a,b)\in R\Rightarrow (a-b)$ is divisible by 5. $(b,c)\in R\Rightarrow (b-c)$ is divisible by 5. then $(a-c)=(a-b+b-c)=(a-b)+(b-c)$ is also divisible by 5. Therefore, $(a,c)\in R$. Hence, the relation is transitive.	(ii) Commutative a * b = a + b - ab = b + a - ba = b*a
	Therefore, the relation is equivalence relation.	

	Associative
	a * (b * c) = a*(b + c - bc)
	$\begin{bmatrix} a & (b & c) - a & (b + c - bc) \end{bmatrix}$
	=a+b+c-bc-ab-ac+abc
	and
	(a * b) * c = (a + b - ab) * c
	=a+b+c-bc-ab-ac+abc
	Let x be the identity element
	$a^*x = x^*a$
	$a + \mathbf{r} - a\mathbf{r} = \mathbf{r} + a - \mathbf{r}a$
	r = 0 is the identity element of *
	x = 0 is the identity element of
9	9 continued
$x \rightarrow x$	$\int x$
$f(x) = \frac{1}{1+ x }$	x $\left \frac{1+x}{1+x} \right ; x \ge 0$
$\Omega_{ne} = \Omega_{ne}$	$y = \frac{1}{1+ x } = \begin{cases} x \\ x \\ x \end{cases}$
$f(\mathbf{x}) = f(\mathbf{x})$	$\frac{1}{1-x}$
	So,
$\frac{x_1}{1+1} = \frac{x_2}{1+1}$	x
$1 + x_1 + x_2 $	$y = \frac{1}{1+x}$
Case (i)	v
If $x_1 > 0, x_2 > 0$	$\Rightarrow x = \frac{y}{1+y}$
$\frac{x_1}{x_2} = \frac{x_2}{x_2}$	The density of this is some as the maps of $f(x)$
$1 + x_1$ $1 + x_2$	The domain of this is same as the range of $f(x)$
$x_1 = x_2$	Therefore, it is onto.
Case (ii)	
If $x_1 < 0, x_2 < 0$	
$\frac{1}{1-x_1} = \frac{1}{1-x_2}$	
$x_1 = x_2$ Case (iii)	
If $x_1 > 0, x_2 < 0$ or $x_1 < 0, x_2 > 0$	
\mathbf{r} \mathbf{r}	
$\frac{x_1}{1+x_1} = \frac{x_2}{1-x_2}$	
$x_1 - x_2 x_1 = x_2 + x_2 x_1$	
$(x_1 - x_2) = 2x_1 x_2$	
This is not nossible as $(x + y) > 0$ and $(2yy) < 0$ this is not	
This is not possible as $(x_1 + x_2) > 0$ and $(2x_1x_2) < 0$, this is not	
valid equation.	
Hence, function is one-one in nature	